因为波长影响的是电子显微镜分辨率的极限理论分辨率,而实际用起来往往其他因素影响更大。比如你用电脑玩吃鸡,内存就2g,哪怕你把显卡从gtx1050提升到gtx2080ti也照样玩不了。
简单来说就是在最上方有一个针尖产生电子,然后加速,然后通过一些磁场(就是图中方框里面还有个叉的东西)把这些电子聚焦到下面样品上的某一个点。而这个聚焦的精确度才是主要影响分辨率的因素。
高中学过了磁场能改变电子的运动方向对吧。但是现在是一堆电子,有各种各样的方向和速度。虽然通过整个过程已经尽量把电子射在样品上的某一个点,但因为这的电子或多或少还是存在能量的差异,所以最后落地点也只是一片区域。而这个区域的大小就是最后图像的分辨率。
上面看不懂的就直接看这个比喻。
假如你在一个楼房顶层往下丢一筐湿漉漉的小球(比如用水泡过的网球),而所有小球在地上砸出来的水痕就是最后图像上的一个像素点。像素点越小当然最后图像分辨率越高。
可以想象,虽然你在楼顶很小心的一个一个的丢,但是不可能所有的球都掉在同一个位置,所以最后楼下水痕大概就是一个圆型。
如果丢了很多很多很多次,那这个圆形就会被填满。这个圆形大小就是最后的分辨率大小。
而如果换一个更小一点的球(比如乒乓球),对于最后的结果,那个圆形水痕并不会有很明显的减小。
但如果你能精确控制每一个小球,让他们每一个水痕都叠在一起,那么最后地板上的水痕其实就是一个小球的大小,这时候换一个更小的球才会显著改变最后地板的水痕大小,也就是分辨率。
实际运用中,增加电子的速度并不是为了获得更高的分辨率,而是因为有些材料不导电甚至带静电,比如玻璃球。电子打下去之后堆积在玻璃球表面,导致后来再有电子打过来被弹开,最后打在了腔体的内壁上。
于是最后扫描出来的图像是腔体内壁的图像。
本站提醒: 以上信息由用户在商名网发布,信息的真实性请自行辨别。服务协议 - 信息投诉/删除/联系本站
北京永盛华远商贸中心 Copyright © 商名网营销建站平台 All Rights Reserved.